Ecological determinants of rabies virus dynamics in vampire bats and spillover to livestock
$0.00
The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated serosurvey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously over more considerable distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence.
Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data.
Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by the waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
Reviews
There are no reviews yet.